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On Totally Real Cubic Fields 
with Discriminant D < 107 

By Pascual Llorente and Jordi Quer 

Abstract. The authors have constructed a table of the 592923 nonconjugate totally 
real cubic number fields of discriminant D < 107, thereby extending the existing table 
of fields with D < 5 x 105 constructed by Ennola and Turunen [4]. Each field is given by 
its discriminant and the coefficients of a generating polynomial. The method used is an 
improved version of the method developed in [8]. The article contains an exposition of 
the modified method, statistics and examples. The decomposition of the rational primes 
is studied and the relative frequency of each type of decomposition is compared with 
the corresponding density given by Davenport and Heilbronn [2]. 

1. Introduction. A table of totally real cubic fields with discriminant D < D' 
has been constructed by Godwin and Samet [5] for D' = 2 x 10i. Angell [1] 
extended this table up to D' = 105 by using a similar method. These tables are not 
complete (see [4] and [9]). A complete table for D' = 105 is constructed in [8] by a 
different method. Finally, a third method is developed by Ennola and Turunen [4] 
to compute a table with D' = 5 x i05. In this paper we shall describe an extended 
table for D' = 107. The method used is an improved version of that developed in 
[8]. Up to 5 x 105, this table agrees with Ennola and Turunen's. 

The modified method and the new algorithm are described in Sections 2 and 
3. Section 4 contains statistics and examples (Tables 1-6). The decomposition of 
the rational primes is studied using the congruential criteria given in [6] and [7]. 
In Section 5 we compare the relative frequency of each type of decomposition for 
different primes with the corresponding density given by Davenport and Heilbronn 
in [2] (Tables 7-11). 

Computations were done on an IBM 3360 owned by the Universitat de Barcelona 
and a VAX-8600 owned by the Facultat d'Informatica de Barcelona. 

2. The Improved Method. The method used to compute our table of totally 
real noncyclic cubic fields is similar to the one described in [8] but improved in 
several ways. In this section we recall the main ideas in [8] and we explain the 
modifications introduced. For every prime p E Z and integer m, vp (m) denotes the 
greatest integer k such that pk divides m. 

Each triple of conjugate noncyclic fields is defined by a polynomial of the type 

(1) f(abX)=X3-aX+b, 
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where a and b are positive integers such that 

(2) f(a, b, X) is irreducible in Q[X], 

(3) there is not a prime p with vp(a) > 2 and vp(b) > 3. 

Then, each field on the triple is isomorphic to the cubic field K = K(a, b) = (0), 
where 0 is a root of the polynomial f(a, b, X). The descriminant of f(a, b, X) is 

(4) D(a, b) = 4a3 - 27b2 = DS2, 

where D = D(K) is the descriminant of the cubic field K and S > 0 is the index 
of 0. It is known (cf. [3] or [7]) that 

(5) D= D(K) = dT2, 

where d is the discriminant of Q(V7P) and T = 3mTo with 0 < m < 2 and To > 0 
is a square-free integer having no common factor with 3d. Note that d > 1, since 
we are assuming that K is totally real and noncyclic. 

Consider the congruences 

(6) a _ 3 (mod 9), b =_ (a - 1) (mod 27). 

We have the following result (cf. [3, p.112]). 

THEOREM 1 (VORONOI). (i) If the congruences (6) are not satisfied, then S 
is the greatest positive integer whose square divides D(a, b) for which there exist 
integers t, u and v such that 

(7) -S/2 < t < S/2, 3t2 - a = uS, t3-at + b = VS2, 

and 1, 0, /3, with / = (02 + to + t2 - a)/S, is a basis for the integers of K. 
(ii) If the congruences (6) are satisfied, then S = 27S', and S' is the greatest 

positive integer whose square divides D(a, b)/729 for which there exist integers t, u 
and v such that 

(8) -3S'/2 < t < 3S'/2, 3t2 - a = 9uS', t3 - at + b = 27vS 2, 

and 1, V,/ , with Vk = (0 - t)/3 and /3 - (02 + to + t2 - a)/9S, is a basis for the 
integers of K. 

It follows that by choosing a minimal t in (7) or (8) there is a unique quadruple 
(S, t, u, v) of integers associated with each pair (a, b). The main idea in [8] is to 
associate a positive definite binary quadratic form F(a, b) with each pair (a, b), 
whose coefficients are given in terms of a, S, t, u and v. We shall give an alternative 
definition for the quadratic form associated with the pair (a, b) (see D, below). We 
repeat here the definition and some of the properties of F(a, b) given in [8], to make 
our exposition more self-contained. 

If the congruences (6) are not satisfied, then Tr(1) = 3, Tr(0) = 0 and Tr(0) = u 
are the traces of the integers in a basis for the integers of K. So the integers ty e K 
with zero trace are given by 

(9) = (3x02 + 3(xt + Sy)9 - 2ax)/3S; x, y e Z, 3 1 ax. 

Let -y $ 0 be such an integer. Its minimum polynomial is f(a', -N((y), X), N(y) 
being the norm of -y and a' = (3u2 - 27tv)x2/9 + (3ut - 9vS)xy/3 + ay2. 
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If 3 t u, since Tr(0) = 0, we have 3 | x. Let z = x/3; then 

a' = (3u2 - 27tv)z2 + (3ut - 9vS)zy + ay2. 

If 3 u, let u = 3w; then 

a' = (3w2 - 27tv)x2 + (ut - 3vS)xy + ay2. 

If the congruences (6) are satisfied, then 

a = 3a1 with a1 = 3a2 + 1 and a2 E Z. 

u = 3u1 +r with Jr1 < 2 and ul, r E Z. 

t = 3t1 +6 with 6 = +1 and t1 E Z. 

The integers -a E K with zero trace are given by 

(10) -f = (X02 + (tx + 3uSx + 9Sy)O - 2aix)/9S; x, y E Z, u = r76. 

Let a 7 0 be such an integer. Its minimum polynomial is f(a', -N(--), X), N(-y) 
being the norm of a and 

a' = (UUi + 2rUi - vt + put, - 3pvS' + pu2a2 + 8u2)X2 + (Ut + 2pai - 9vS')xy + ay2. 

With these notations, the quadratic form F(a, b) associated with the pair (a, b) 
is defined in [8] as follows: 

DEFINITION 1. (i) If the congruences (6) are not satisfied and 3 t u, we define 

F(a, b) = (3U2 - 27tv, 3ut - 9vS, a). 

(ii) If the congruences (6) are not satisfied and u = 3w, we define 

F(a, b) = (3W2 - 3tv, ut - 3vS, a). 

(iii) If the congruences (6) are satisfied we define 

F(a, b) = (UUi + 27)Ui - vt + puti - 3pvS + ft2a2 + 2, Ut + 2ua1 - 9vS, a). 

Then F(a, b) represents precisely those integers a' > 0 for which there exists an 
integer b' such that K(a', b') is isomorphic to K(a, b). Then, if K(a, b) K(a', b'), 
the corresponding associated forms F(a, b) and F(a', b') represent the same integers 
and, consequently, they are equivalent (cf. [8] or [10]). 

THEOREM 2. Let F = F(a, b) be the form associated with the field K = K(a, b) 
of discriminant D = D(K). Then the discriminant D(F) of the form F is 

D(F) = -D/3 if 27 | D, 

D(F) =-3D if 27 t D. 

Proof. One computes D(F) from Definition 1. Then D(F) = -D/3 in case (ii), 
and D(F) = -3D in cases (i) and (iii). 

In case (ii) of Definition 1, we have a = 3a1 (since u = 3w) and then 27 | DS2 
in (4). If 3 t S then 27 | D; else, easy congruential considerations show that if 
3 1 u and 9 , S. then the congruences (6) are satisfied, hence we must have S = 3S, 
with 3 t Si and D = 3D1. From (7) it follows that a1 = t2 (mod 3) and b 2t3 
(mod 3). Then D1S2 = 4a 3 - b2 = 0 (mod 3), so 9 | D and from Theorem 2 of [7], 
27 must divide D. 



584 PASCUAL LLORENTE AND JORDI QUER 

Conversely, from Theorem 2 of [7] and easy congruential considerations one can 
show that if 27 | D then case (ii) of Definition 1 holds. E 

From this result and the elementary theory of reduced positive definite quadratic 
forms we obtain 

THEOREM 3. Let K be a totally real noncyclic cubic field of discriminant D = 

D(K). Then K K(a, b) for some integer a with 

a < VD/3 if 27 1 D, 

* < v'D if 27 tD. 

In this case, we have 

S < S(a) =2a/3 if 27 1 D, 

S < S(a) = 2x if 27 t D. 

As a consequence, a table of all totally real noncyclic cubic fields of discriminant 
D = D(K) < D' can be constructed from a finite number of pairs (a, b), carrying 
out the following steps: 

- Elimination of all pairs not satisfying (2) or (3). 
- Decomposition of D(a, b) as in (4) for the remaining pairs. 
- Elimination of all pairs not satisfying the bounds of Theorem 3. 
- Elimination of isomorphic fields. 
In this way, a table with D' = 105 was constructed (see [8] and [9]); but this 

algorithm is too inefficient (about 70 hours of computer time were needed to con- 
struct that table) to be applied to much greater D'. Moreover, the computation of 
D(a, b) requires multiple-precision arithmetic. We explain below the improvements 
introduced in the method. With them, the method becomes much more efficient. 

A. Irreducibility of f(a, b, X). It is convenient to observe that each of the follow- 
ing conditions implies the irreducibility of f(a, b, X) in Q[X]: 

(11 ) 1 < vp (b) < vp (a) for some prime p, 

(12) a-b _1 (mod2), 

(13) a l (mod3) and 3tb. 

In [8] one uses the fact that f(a, b, X) is reducible if and only if it has a root 
m E Z. In this case, m I b, and an elementary study of f(a, b, X) shows that such 
a root m must satisfy 

0<m< fa or /a' <-m< a+ -a/ 3. 

B. Computation of D(K) and S. In [8], D = D(K) and S were computed from 
D(a, b) using Theorem 1. This was certainly the most laborious part of the method. 
The results in [7] simplify this computation. Indeed, if (11) is satisfied for a prime 
p, then p I T and (11) is also a necessary condition for p I T if p :A 3; the factor 
3m of T can be determined from certain congruential conditions involving a and b 
(see [7, Theorems 1 and 2]). In this way, T is computed and, eventually, a divisor 
So of S is also obtained. It is also easy to compute V2 (0) and v2 (S) from a and 
b in case 2 t T. Now, every new integer m whose square divides D(a, b) will be 
a new factor of S, i.e., m I S if and only if D(a, b) _ 0 ( mod mi2). Also, these 
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computations sometimes give several prime factors of d; in fact, p I d if any of the 
following conditions is satisfied: 

(14) 1 = vp(a) < vp(b), 
(15) vp(D(a,b)) is odd. 

These conditions are also necessary for p I d, except if p = 3. In this case, some 
additional congruential conditions must be considered (see [7, Theorem 1]). Using 
the bound S < S(a) in Theorem 3, one can easily compute S (and then D) or 
eliminate the pair (a, b). 

C. Eliminating Superfluous Fields. With the help of Theorem 3 we can eliminate 
all pairs (a, b) for which S > S(a). We can eliminate also the pairs with D < D(a), 
where 

(16) D(a) = 9a2 or D(a) = a2, according as 27 | D or not, 

because in this case K(a, b) K(a', b') for some a' < a. The determination of the 
bounds S(a) and D(a) (i.e., if 27 D or not) follows from the computations in B. 
In many cases, this elimination can be done by knowing only some factors of D and 
S, and it is not necessary to compute S and D completely as in [8]. 

D. Eliminating Isomorphic Fields. If we obtained two fields K1 = K(ai, b1) and 
K2 = K(a2,b2) with the same discriminant D, we have to test if K1 K2 or 
not. As in [8], this can be done by studying their associated quadratic forms. The 
method has been improved at this point too. We start giving a new definition of 
the associated quadratic form: 

DEFINITION 2. (i) In the first case of Voronoi's Theorem, let B = (3b - 2at)/S. 
Then we define 

F* = F* (a, b) = (a, B, C) if 271 D, 

F* = F* (a, b) = (a, 3B, C) if 27 t D, 

where C is determined by the condition D(F*) = -D/3 or D(F*) =-3D, accord- 
ing as 27 | D or not. 

(ii) In the second case of Voronoi's Theorem, let a' = a/3, let ,u be the only integer 
with I u < 2 and u = t(t2 - a')/3S' ( mod 3) and let B = -2,ua' + (b - 2a't)/3S'. 
Then we define 

F* = F* (a, b) = (a, B, C), 

where C is determined by the condition D(F*) = -3D. 
It is immediate to see that the associated form F* (a, b) given in this definition 

is equivalent to the associated form F(a, b) given in Definition 1. An advantage 
of this new definition is that it is not necessary to compute u and v in Voronoi's 
Theorem. Moreover, if a is minimum, the reduced equivalent quadratic form is 
easily obtained from a and B; it suffices to find n E Z such that 

(17) B' = B+2an and IB'? < a. 

Then the reduced form will be F' = (a, B', C'), where C' is determined by the 
discriminant. 

The following theorem permits us to eliminate a large number of isomorphic 
fields. 
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THEOREM 4. Let K1 = K(a1,bl) satisfy the conditions of Theorem 3, and let 
F' = (a1, B', C') be the reduced form equivalent to its associated form. Then there 
exists a pair (a2, b2) with a2 > a,, and b2 :$ b1 in case a2 = a,, such that the field 
K2 = K(a2, b2) satisfies the conditions of Theorem 3 and is isomorphic to K1 if 
and only if D(C') < D(K1). In this case, we must have C' = a2, and there is only 
one such pair. 

Proof. We know that a2 = F'(x, y) must be an integer represented by F', and 
by (3) we have that y $ O. It is easy to see that C' = F(O, 1) is the only integer 
a represented in that way by F' for which the condition D(a) < D(K1) can be 
satisfied. Dl 

Theorem 4 is not sufficient to eliminate isomorphic fields if there exists a third 
field K3 = K(a3,b3) satisfying the conditions of Theorem 3, with the same dis- 
criminant as K1 and K2 and with a2 = a3 = C' (D = 77844 is an instance of this 
case). Then we have to decide whether K1 K2 or K1 - K3. For this we can 
proceed as in [8]: The representation of a2 by F(al, bl) determines an integer 'y in 
K1 with zero trace, whose minimal polynomial is f (a2, -N(--y), X). Then K1 1 K2 
or K1 1 K3 according as IN(-y)l is equal to b2 or b3. 

Using the definition of -y (see (9) and (10)) and the transformation taking 
F(al, bl) into its reduced associated form F' = (a,, B', a2), and computing ex- 
plicitly the norm N(-y) of the integer -y, we obtain 

THEOREM 5. Let K1 = K(al, b1) satisfy the conditions in Theorem 3 with 
D(K1) = D. Let F' = (a ,B',a2) be the reduced form equivalent to its associated 
form F = F(al,bl) with D(a2) < D, and let -y be the null trace integer in K1 
determined by the representation of a2 by F. Then: 

(i) If D = 27D' and a1 = 3a, then 

N(y) = ((2aa2 - D')S2 - 4a3 + b1(t - nS)(a1 - (t - nS)2))/S3. 

(ii) If 27 t D and the congruences (6) are not satisfied, then 

N(y) = ((2ala2 - D)S2 - 4a3 + b1(3t - nS) (9a1 - (3t - nS)2))/S3. 

(iii) If a, = 3a and the congruences (6) are satisfied, then 

N(y) = ((2aja2-D)27S 2 -4a3+b1 (t+3pS'-9nS') (a, - (t+3pS'-9nS')2))/(9S')3. 

Here, S, S', t and p are the integers used in Definition 2 and n is the integer deter- 
mined by (17). 

3. The New Algorithm. The method described in the previous section pro- 
vides an easy computer-programmable algorithm to construct a table of the totally 
real cubic fields K with discriminant D = D(K) < D' for a given D'. We shall 
now describe the algorithm used by the authors. 

We take all integers a with 4 < a < \/7D' and, for each, we take the integers b 
with 1 < b < 2(a/3)3/2. For each pair (a. b) we proceed as follows: 

Step 1. Compute M = g.c.d.(a. b) and work with every prime factor p of M. 
During these computations: 

(a) The pairs not satisfying (3) are eliminated. 
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(b) To is always obtained and T is also obtained if 3 1 M (as is explained in B of 
Section 2). In case 3 1 M, the bounds S(a) and D(a) are determined. 

(c) vp(D) and vp(S) are computed using (b) and (14). 
(d) In some cases, irreducibility of f(a, b, X) is proved by (11). 
Step 2. If irreducibility of f(a, b, X) has not been proven in Step 1(d), use the 

other results in A of Section 2 to eliminate the pairs with f(a, b, X) reducible. 
Step 3. If 3 t M, compute v3(D) and v3 (S), using the congruential conditions 

given in [7]. So, T is obtained and the bounds S(a) and D(a) are determined. 
(Remark. During the computations, divisors So of S and Do of D are obtained. 

If So > S(a) or Do > D', the pair (a, b) is eliminated.) 
Step 4. If 2 t M, compute v2(D) and v2 (S), using the congruential criterion 

given in [7]. 
Step 5. Let Si = S(a)/So. For every prime p with p t 6M and p < Si, examine 

D(a, b) modulo p2 (if p2 < S1 then examine D(a, b) modulo p4). In this way: 
(a) vp(D) and vp(S) are computed using (15). 
(b) Eventually, Do, So and Si are modified. 
(c) The final So is the greatest S in (4) with S < S(a). 
Step 6. Let D1 = D(a, b)/S02. If D1 > D', the pair (a, b) is eliminated. Indeed, 

in this case we have D > D' or S > S(a). 
Step 7. Let D2 = D1/DOT2. The pair (a, b) is eliminated in the following cases: 
(a) If D2 is not square-free (in this case, S > S(a)). 
(b) If D2 = Do = 1 (in this case, d = 1). 

(c) If D1 < D(a). 
Step 8. If the pair (a, b) has not been eliminated in the preceding steps, K = 

K(a, b) is a cubic field with discriminant D = D1 < D' satisfying the conditions of 
Theorem 3. During the process, d = DOD2, T and S = So have been computed. 
Record these data in a file. 

Step 9. Data in that file are ordered with increasing discriminant D without 
altering the order of their generation among the fields with the same discriminant. 

Step 10. Eliminate isomorphic fields in the file by using the results of D in 
Section 2. To do this, proceed as follows: Let Ki = K(ai,bi), i = 1,... , N, 
be all the fields in the file with the same discriminant D. According to Step 9, 
we have a1 < a2 < ... < aN. Compute the reduced quadratic form (a1,B,C) 
equivalent to the quadratic form associated with the pair (a1, b1). By Theorem 4, 
K1 is isomorphic to some Ki with i > 1 (and only to one of them) if and only if 
D(C) < D, and in this case, C = aj. If C = ai for only one i > 1, then eliminate 
the field Ki. If C = ai for more than one i > 1, then compute N(-y) by using 
Theorem 5 and eliminate the field Ki = K(ai, bi) for which bi = IN('Y)j. Proceed 
in the same way with the next noneliminated field until the set of all fields with 
discriminant D is completely purged of isomorphic pairs. 

This algorithm is very efficient. A table for D' = 105 can be constructed in less 
than a minute of computer time, and with D' = 5 x 105 in about five minutes. 
We have used it with D' = 107, and the total computer time required was about 5 
hours. Almost all time was spent in the generation of the fields K(a, b) (Steps 1 to 
8). The purge of isomorphic fields in Step 10 eliminated around 10% of the stored 
fields and required about 8 minutes. 
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4. Totally Real Cubic Fields with Discriminant D < 107. The table con- 
taining the 592422 nonconjugate totally real noncyclic cubic fields with discriminant 
less than 107 consists of 10 sectors, the kth containing the fields with discriminants 
between 106(k - 1) and 106k. For each field K = Q(O), its discriminant D, the 
coefficients a and b of a polynomial Irr(O, Q) = f(a, b, X) and the integers S and T 
are listed. Other data obtained during the computations were not stored for lack 
of space. Separately, we have constructed a table of the 501 cyclic cubic fields with 
discriminant less than 107. 

TABLE 1 

Number of cubic fields with discriminate 0 < D < 107 

Sector Noncyclic Cyclic Total Non cyclic Cyclic Total 
(accum.) (accum.) (accum.) 

1 54441 159 54600 54441 159 54600 
2 57777 67 57844 112218 226 112444 
3 58787 47 58834 171005 273 171278 
4 59266 44 59310 230271 317 230588 
5 59738 36 59774 290009 353 290362 
6 59994 36 60030 350003 389 350392 
7 60376 27 60403 410379 416 410795 
8 60507 35 60542 470886 451 471337 
9 60705 25 60730 531591 476 532067 

10 60831 25 60856 592422 501 592923 

TABLE 2 

Number of discriminants 0 < D < 107 with 2 associated nonconjugate cubic fields 

Sector Noncyclic Cyclic Total Noncyclic Cyclic Total 
(accum.) (accum.) (accum.) 

I 166 37 203 166 37 203 
2 223 18 241 389 55 444 
3 206 10 216 595 65 660 
4 218 11 229 813 76 889 
5 231 9 240 1044 85 1129 
6 221 9 230 1265 94 1359 
7 241 9 250 1506 103 1609 
8 224 6 230 1730 109 1839 
9 262 9 271 1992 118 2110 

10 239 8 247 2231 126 2357 

Table 1 gives the number of cubic fields K by sectors. We give for each sec- 
tor k the number of noncyclic cubic fields, cyclic cubic fields and cubic fields with 
discriminant 106(k - 1) < D < 106k and with discriminant 1 < D < 106k (accu- 
mulated). Tables 2, 3 and 4 are similar for the number of discriminants with N 
associated nonconjugate fields, for N = 2, 3 and 4, respectively. 

There are five discriminants D < 107 with N associated nonconjugate fields 
for N > 4. And we have N = 6 for all of them. In Table 5 we have listed 
these discriminants, their decomposition D = d32mT and the coefficients a and 
b of the polynomials f(a, b, X) defining the six corresponding fields. Among the 
discriminants corresponding to noncyclic fields in Table 4, there are nine with T > 1; 
these discriminants are listed in Table 6 in a way similar to those in Table 5. 
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TABLE 3 

Number of discriminants 0 < D < 107 with 3 associated nonconjugate cubic fields 

Sector Noncyclic (oncyclic 

1 343 343 
2 468 811 
3 557 1368 
4 552 1920 
5 568 2488 
6 601 3089 
7 624 3713 
8 622 4335 
9 582 4917 

10 626 5543 

TABLE 4 

Number of discriminants 0 < D < 107 with 4 associated nonconjugate cubic fields 

Sector Noncyclic Cyclic Total Noncyclic Cyclic Total 
(accum.) (accum.) (accum.) 

1 161 1 162 161 1 162 
2 233 1 234 394 2 396 
3 255 1 256 649 3 652 
4 284 1 285 933 4 937 
5 283 1 284 1216 5 1221 
6 293 1 294 1509 6 1515 
7 311 0 311 1820 6 1826 
8 348 2 350 2168 8 2176 
9 364 0 364 2532 8 2540 

10 347 0 347 2879 8 2887 

From Tables 4 and 6 we observe that there are 2879 discriminants D = d, 
1 < D < 107, with four associated noncyclic fields. From class field theory we can 
conclude that there are 2879 real quadratic fields with discriminant d < 107 whose 
ideal class group H(d) has 3-rank equal to 2. A complete study of the H(d) having 
3-rank > 1 for d < 107 will be given in a later paper. 

5. On Davenport and Heilbronn's Densities. The total number of noncon- 
jugate cubic fields with discriminant less than 107 is 592923, giving the empirical 
density 0.05929. Table 1 easily permits the computation of this empirical density 
in each sector. Davenport and Heilbronn prove in [2] that the asymptotic value 
is (12f(3))-' z 0.06933. Thus the convergence is very slow, as was noted in [11]. 
In [2], Davenport and Heilbronn obtain also the asymptotic value of the density 
of each type of decomposition of a rational prime p in cubic fields. The values 
obtained for them are: 

1/w for p = P3, 

p1w for p = pQ2, 

p2/3w for p = P. 

p2/2w for p = PQ, 

p2/6w for p = PQR, 
with w=p2 +p+l1. 
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TABLE 5 

Discriminants 0 < D < 107 with 6 associated cubic fields 

Coefficients of the polynomial f(a,b,X) 
D= 32"Td 32m To d 

a b 

96 134 
102 210 

3054132 9 2 84837 150 622 
210 1122 
336 1244 
366 2674 

108 106 
114 210 

4735476 9 2 131541 168 726 
252 1292 
288 1834 
648 4772 

180 60 
270 990 

5807700 81 10 717 360 2460 
450 2850 
540 4740 
720 6690 

126 246 
342 174 

6367572 81 2 19653 396 2994 
450 3642 
540 3852 
720 3012 

144 282 
216 204 

9796788 81 2 30237 540 3204 
648 5220 
756 7794 
918 5742 

Using the results of [6] and [7], we have computed the decomposition type of the 
rational primes p for 2 < p < 181 in each of the 592422 noncyclic cubic fields in 
the table. In particular, there are 46532 noncyclic cubic fields K with D(K) < 107 
having 2 as its common index divisor, i.e., with the rational prime 2 decomposing 
completely. We give in Tables 7, 8, 9 and 10 the empirical density of each type of 
decomposition by sector and its asymptotic value for p = 2, 3, 5 and 7, respectively. 
In Table 11 we give the empirical density and its asymptotic value of each type of 
decomposition for the primes p with 2 < p < 100 in all fields in the table. 
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TABLE 6 
Discriminants 0 < D < 107 with 4 associated cubic fields and T = 32mTO > 1 

Coefficients of the polynomial f(a,b,X) 
D= 32nTod 32' To d 

a b 

90 210 
1725300 81 10 213 180 780 

270 1530 
360 2580 

126 462 
2238516 81 14 141 252 546 

252 1428 
378 2814 

90 30 
2891700 81 10 357 180 660 

180 870 
360 1290 

180 420 
4641300 81 10 573 270 1170 

540 1590 
540 4140 

126 210 
6810804 81 14 429 378 1302 

378 2394 
504 4326 

270 630 
7557300 81 10 933 450 2550 

720 660 
810 8730 

126 42 
7953876 81 14 501 252 1092 

378 798 
756 7308 

336 1694 
8250228 9 14 4677 630 266 

756 7924 
840 8764 

270 90 
8723700 81 10 1077 450 3630 

540 3420 
900 8700 
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TABLE 7 
Type of decomposition of the prime 2 in the 

noncyclic cubic fields with discriminant 0 < D < 107 (%) 

Sector P3 PQ2 P PQ PQR 

1 15.797 27.540 21.458 28.335 6.870 
2 15.378 27.800 20.860 28.385 7.577 
3 15.173 27.996 20.612 28.510 7.709 
4 15.167 27.824 20.590 28.504 7.915 
5 15.211 28.004 20.459 28.412 7.913 
6 15.048 28.014 20.467 28.443 8.027 
7 15.115 28.028 20.412 28.429 8.016 
8 15.038 28.023 20.379 28.471 8.088 
9 14.900 28.153 20.331 28.446 8.171 

10 15.163 27.951 20.210 28.532 8.144 

All Table 15.192 27.938 20.567 28.448 7.855 

Theoretical 14.286 28.571 19.048 28.571 9.524 

TABLE 8 
Type of decomposition of the prime 3 in the 

noncyclic cubic fields with discriminant 0 < D < 107 (%f) 

Sector P3 pQ2 P PQ PQR 

1 8.416 22.257 25.988 34.718 8.620 
2 8.154 22.447 25.271 34.694 9.435 
3 8.162 22.493 25.038 34.683 9.625 
4 8.060 22.546 24.943 34.683 9.768 
5 8.151 22.661 24.842 34.584 9 763 
6 8.082 22.612 24.746 34.710 9.849 
7 8.109 22.658 24.710 34.469 10.054 
8 8.055 22.538 24.663 34.768 9 976 
9 7.881 22.652 24.659 34.816 9.993 

10 8.162 22.628 24.458 34.670 10.082 

All Table 8.120 22.553 24.919 34.679 9.729 

Theoretical 7.692 23.077 23.077 34.615 11.538 

TABLE 9 
Type of decomposition of the prime 5 in the 

noncyclic cubic fields with discriminant 0 < D < 107 (%) 

Sector P3 PQ2 P PQ PQR 

1 3.477 15.373 30.148 40.558 10.444 
2 3.415 15.650 29.230 40.533 11.172 
3 3.375 15.702 29.103 40.478 11.341 
4 3.390 15.665 28.821 40.487 11.637 
5 3.296 15.797 28.851 40.552 11.504 
6 3.434 15.752 28.676 40.387 11.751 
7 3.379 15.793 28.728 40.402 11.698 
8 3.342 15.785 28.641 40.384 11.848 
9 3.311 15.673 28.587 40.552 11.877 

10 3.362 15.869 28.558 40.307 11.905 

All Table 3.377 15.709 28.920 40.463 11.531 

Theoretical 3.226 16.129 26.882 40.323 13.441 
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TABLE 1 0 

Type of decomposition of the prime 7 in the 
noncyclic cubic fields with discriminant 0 < D < 107 (%) 

Sector P3 pQ2 P PQ PQR 

1 1.859 11.712 31.992 43.148 11.289 
2 1.784 11.873 30.967 43.341 12.034 
3 1.829 11.955 30.869 42.992 12.355 
4 1.794 11.863 30.675 43.366 12.302 
5 1.863 11.868 30.587 43.053 12.628 
6 1.784 12.010 30.656 42.984 12.566 
7 1.847 11.953 30.555 43.035 12.609 
8 1.778 12.051 30.134 43.393 12.643 
9 1.817 11.931 30.503 43.071 12.678 

10 1.863 11.843 30.513 42.942 12.840 

All Table 1.822 11.908 30.731 43.131 12.408 

Theoretical 1.754 12.281 28.655 42.982 14.327 

TABLE 1 1 

Type of decomposition of the rational primes p < 100 in the 

noncyclic cubic fields with discriminant 0 < D < 107 (%f) 

p3 pQ2 P PQ PQR 

Prime Prime 
~~Theore- Theore- Theore- Theore- Theore- 

Empirical tical Empirical ticl Empirical tical Empirical tical Empirical tical 
tical tical tical tical tical 

2 15.192 14.286 27.938 28.571 20.567 19.048 28.448 28.571 7.855 9.524 
3 8.120 7.692 22.553 23.077 24.919 23.077 34.679 34.615 9.729 11.538 
5 3.377 3.226 15.709 16.129 28.920 26.882 40.463 40.323 11.531 13.441 
7 1.822 1.754 11.908 12.281 30.731 28.655 43.131 42.982 12.408 14.327 

11 0.776 0.752 8.015 8.271 32.300 30.326 45.628 45.489 13.280 15.163 
13 0.559 0.546 6.893 7.104 32.705 30.783 46.286 46.175 13.558 15.392 
17 0.332 0.326 5.359 5.537 33.218 31 379 47.158 47.068 13.933 15.689 
19 0.265 0.262 4.822 4.987 33.391 31.584 47.473 47.375 14.049 15.792 
23 0.188 0.181 4.017 4.159 33.614 31.887 47.900 47.830 14.281 15.943 
29 0.120 0.115 3.216 3.330 33.811 32.185 48.340 48.278 14.512 16.093 
31 0.102 0.101 2.996 3.122 33.893 32.259 48.429 48.389 14.580 16.130 
37 0.069 0.071 2.536 2.630 34.017 32.433 48.686 48.650 14.693 16.217 
41 0.063 0.058 2.310 2.380 34.022 32.521 48.824 48.781 14.783 16.260 
43 0.051 0.053 2.209 2.272 34.057 32.559 48.863 48.838 14.819 16.279 
47 0.043 0.044 2.008 2.082 34.119 32.624 48.926 48.937 14.904 16.312 
53 0 037 0.035 1.798 1.851 34.104 32.705 49.078 49.057 14.984 16.352 
59 0.028 0.028 1.627 1.666 34.229 32.769 49.065 49.153 15.051 16.384 
61 0.025 0.026 1.580 1.612 34.161 32.787 49.158 49.181 15.077 16.394 
67 0.021 0.022 1.433 1.470 34.211 32.836 49.203 49.254 15.132 16.418 
71 0.021 0.020 1.335 1.389 34.108 32.864 49.403 49.296 15.132 16.432 
73 0.018 0.019 1.308 1.351 34.181 32.877 49.313 49.315 15.179 16.438 
79 0.015 0.016 1.196 1.250 34.227 32.911 49 338 49 367 15.224 16.456 
83 0.015 0.014 1.148 1.190 34.212 32.932 49 390 49.398 15.234 16.466 
89 0.013 0.012 1 080 1.111 34.202 32.959 49416 49.438 15.289 16.479 
97 0.013 0 011 0.989 1.020 34.257 32.990 49.400 49.485 15.340 16.495 
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